Monday, January 20, 2014

2.2 Polynomial Functions of Higher Degree



Graphs of Polynomial Functions

Continuous- the graph has no breaks, holes, or gaps

End Behavior 

The exponent of the first term will determine whether the ends of the polynomial function will move in the same direction or the opposite
  • An even exponent means the ends will be the same (both rise or both fall)
  • An odd exponent means the ends will be opposite (one rises and one falls)


                                                                     Polynomial with a degree of 0



  
                                                                   Polynomial with a degree of 1

                                                                                      odd = opposite

                                     

                                                                        Polynomial with a degree of 2

                                                                                       even = same




                                                                        Polynomial with a degree of 3

                                                                                         odd = opposite




                                                                          Polynomial with a degree of 4 

                                                                                              even = same




                                                                          Polynomial with a degree of 5

                                                                                          odd = opposite



Leading Coefficient Test

     f (x) = 28x6 + 15x3 – 12x2 + 87

  • Leading coefficient = 28
  • The leading coefficient, in this case 28, will tell us whether the right end of the graph will rise or fall
  • A positive coefficient means the right end will rise/ go towards infinity
  • A negative coefficient means the right end will fall/ go towards - infinity


Zeros of Polynomial Functions

A zero of a function f is a number x for which f (x) = 0

An nth degree polynomial will have a maximum of n x-intercepts

A polynomial to the nth degree will have a maximum of n-1 extremas (relative minimums or maximums) 

Example:    f (x) = x3- x



The degree of this polynomial is 3.  The maximum number of extremas this polynomial can have is two because 3 - 1 = 2

A polynomial with a degree of 3 can have zero extremas as well. 

Example:      y = x3 


No comments:

Post a Comment